4. Architecture

Part a)

Figure 1: An overview of the Classes involved in the system architecture

Bl P e

L]
II: = e pl :Il:L:-:.;l I-H" |lt:ll- el T o il
£ B b . . #
1 ¥
ﬂrl'lﬂ.'l.-rar -'E:I.' ril e B [|i-:|!'.-l Ll T -'EIE'.-Inl .E:ll-ldll LE T]
¥ .I.'. u
.
|T|r'-r' |:E:Fl-|lr1'.-l i :\.E.:"Ilqplq'.:.-l. m' 'Ell'lli LR F |:E.'|I.'l'i"-||-'i 1]
'Elh- Lo |:E:|ll_pl-lr|

Figure 2: A detailed look at the methods and attributes for GameScreen, Station,
ChefManager, CustomerManager and Chef

*.:I:‘\."":‘\-I'_:‘il'\-l'

B i i F—
e

@ b e e el
- * &

" A LETUNPETS T o Cureearissnag A s
. - —
:::""' ;"' , (B e e By e Lamidebs N ETTTRRT R R S —
v Le n BB u G PP b (k) <A B P -
*
]
B} rut

L B T | B
+ i B R PR R Irgradenty =l

Figure 3: A detailed look at the methods and attributes for ChoppingStation, CookingStation,
IngredientStation, RecipeStation, Recipe, Station and Ingredient.
.];] L

£ arhaponir B opon TP v
gk o Ty | o~k o P+

B Creppirgiuse) o ey

Elismarriups T i priar=on
LY T i o e LB A AL I O g el B Lada
=R L] :E' —
eyl s
MComsl. Boabiar bl
P e g e e g Ui g

Figure 4: A detailed look at the methods and attributes for Station, GameScreen, UlOverlay,
StationUIController, StationsActionUl and Timer

i) sawice

: (L] amesoseer
 EOEIBONAT DR RT nTpe) v
& gebictionTypse(s ListomionTypes - ¥
) Soation I ontrolier _
 nhaosfraqreulssueson Sration | voed ﬁ? W Doy
::d:m:du-:ll:nﬂ{:—d e = = ipranenefUNnED {hef) el
. = Hrnbrsaratil] v
heomskcticamtadon: Slation, actian Livi=Acton Ty wid
:;d-\.n:u.:n—u-:inl::und - = = updfaeiprl K pe . Seu pr e e
« hgbsdragren i ianon nationf void ¥
¥

=

{E) swsonastiznun

| @ |

& whowFrogras Bl voud i Aean

& hiduFrogroa B} voed I 1
& updainFrogrmsperorriage: Boel | veed .mﬂ
¥ WAk LN Lol Acbon Ty w3 St ==,

hidudzimemill veud

Figure 5: A state diagram for controlling the chefs

Cartraliing the Chafa - Sksne Mods

Chaflssisoied
| e
.-"-- a --"-\._
- Vy T
- fanee mrdn e e ot L Y -~
- I \ ",
~ E III n
Ehel] B

| e ey b ket ol 2 L e mEnd by e s | \'.I
LY — | i
b, K) |

\H"\-._ b e, 1 i i 7 e T L k]

- LY
- -
T Challheleched -

=
H'\-\._

-

= i

_':"'C'f?ﬂh‘?

" ".
"o e ks o reae chal 3
" I
-

Figure 6: A state diagram for the overall control of the game
'

LE e R .'Irl.I:l-:ln.‘ !t:'f-"-'u'f:u'r“kﬁbt:l-n‘.ﬂ-_l-iﬂr.ﬂu Hhrrrll!r'r!-.:l..'t'illl.l e F’.'l"':"-!"l'ﬂ"]'!!".|"| rlﬁnl-l-q:\-r'lm_.'lﬂ

-

Figure 7: A state diagram for navigating through the screens

Ussr mawing threugh tha pcreara - Stats Model

S e e S ngaralcresn | CheeRREieRn

Ryt wmar

Figure 8: A sequence diagram showing the completed process for the user to create
a burger

WA (T P B389 - S B 8 LHA G

T el Wgende a1 N1a]aw's T b g T (=0 or] Pty e al s e oAl A

T,

Lrall FRFEIENLITEN CEERELIEEE (8, g} FELRaSEHEN HRAEREER

Figure 9: The sequence diagram of using chefs and how they interact with the
station collider

Chaf Faleel pfimder Haten SlelrsCarioier Slalmaris borfuticm
rlromdaps bmrady o ol
=
- A ol i i i -
=
ok dacars P = swin
= - « ey
dpla 4
5 Al -
a
Chaf Zxatioe. clider Shation Statiamalarimiler Sisbardc borBubicrs

The tools used to create the diagrams to represent the architecture was PlantUML. We used
PlantUML for its easy to learn and understandable syntax. PlantUML has support for making
a variety of diagrams such as UML, State and sequence diagrams. PlantUML was useful to
produce these diagrams in different formats that are simple to understand like PNG and Pdf
files. We used class diagrams as it is most suited to represent an object oriented
programming language such as Java.

Phase 2

Going into phase 2, there are not many major changes to the structure of the game though
there are some additions made to it. The tool used to create the diagrammatic
representations is PlantUML. It is the tool that we have previously used for Assessment 1, so
we are already familiar with it. Another alternative that we could use for the representation is
LucidChart. However, we only used PlantUML this time as it is more convenient to keep the
consistency of the diagrams instead of having to ensure that the diagrams created with
different tools are similar and consistent. We used class diagrams for the class
representation because it was more efficient to write the code to create them than to draw
them manually in some other applications. We also used sequence diagrams for the
behavioural structure to show how the user moves through the screens and what information
is passed between items. Another example is how to prepare orders that are represented by
the sequence diagrams below. We created interim versions of the class diagrams &
sequence diagrams on an application on iPad called Notability to help our understanding,
you can see how the classes have evolved over the course of development.

Structural Diagrams
Figure 2.1 shows a detailed look at the methods and attributes for ChoppingStation,

CookingStation, IngredientStation, RecipeStation, Recipe, Station and Ingredient with new
classes added to Recipe.

(@) station

e doStationAction(action: ActionType): void
e getActionTypes():List<ActionType>

@ ChoppingStation @ CookingStation

‘@Ingredientstatiun‘ |©Recipestatiun
I 1 [1
{] L

m isCorrectingredient({ingredient: Ingredient): boolean
o totalTimeToBurn(time: Time) float

m isCorrectingredient(ingredient: Ingredient): boolean

@ Ingredient @ E—
isChopped: boolean :
isCooked: boolean type: String
type: String o getRecipelngredients(): List<String>
AN SN
. | N

. | N
‘£ 7 Il \.
‘@PlzzaBase‘ |©Potato‘ |©cheese|
L I I
\ f f

Figure 2.1

Figure 2.2 below shows a detailed look at the methods and attributes for Station,
GameScreen, UlOverlay, StationUIController, StationsActionUl and Timer with the newly

updated instances in UlOverlay.

@ Station

o doStationAction(ActionType): void
@ getActionTypes(): List<ActionType=>

@ GameScreen

@ StationUlController

o showProgressBar(station: Station): void

o updateProgressValue(station: Station, percentage: float): void
o addStation(station: Station): void

o showActions(station: Station, actions: List<ActionType=): void
o hideActions(station: Station): void

o hideProgressBaristation: Station): void

@ Uloverlay
o updateRep

o updatePatience
o gameOverUl

*

(© stationActionul

o showProgressBari): void

o hideProgressBar{): void

o updateProgress(percentage: float): void

o showActions(actions: List<ActionType=): void
e hideActions(): void

Figure 2.2

o updateChefUl(chef: Chef): void

o finishGameUl(): void

o updateRecipeUl(recipe: Recipe): void

o updateRecipeCounter{remainingRecipes int)

@ Timer

time: float

o stop(): void
o start(): void
o reset(): void

Figure 2.3 shows the new class that we created called LongBoiBank for the addition of the

money system.

@ LongBoiBank

o balance: int

@ getBalance(): int

o setBalance(balance: int): void

@ earn{dish: String): void
o spend(difficulty: String): void

Figure 2.3

Behavioural Diagram

The sequence diagrams below show how to prepare a burger, pizza, jacket potato and salad to
ensure each of the items is ready to be served to customers.

Player | Game |

selects Humborge

: >

. selects bun :

I }'I

! cooks patty >

:{ picks up cooked Humborge |

i . I .
‘ Player | ‘ Game |

Figure 2.4

Player | | Game |

| .
i selects Pizza

cooks PizzaBase

selects cheese

.r{ picks up cooked Pizza |
‘ Player | | Game |

Figure 2.5

Player | | Game |

 selects JacketPotato

: >
| selects cheese |
) }I
| cooks potato :
: P >

.‘ picks up cooked JacketPotato |
I . | .
‘ Player | | Game |

Figure 2.6

Part b)

Architecture is a vital part of designing any program, as it provides a structure of how to code
is going to work. Initially, we used the Responsibility Driven Design (RDD) strategy to aid the
team to generate the main classes/features/screens that we need to implement. We chose
this over Domain-Driven Design since Java is our main programming language, and RDD is
best used for object-oriented languages. It allowed us to look at the system as a whole and
not get caught up in the specifics just yet.

Before we get ahead of ourselves, it is important to ensure that we are considering the
requirements of the project. Relating back to the requirements centres the group ensuring
that we remain on task. As a result during the RDD process we ensured that the
requirements were in front of us to refer back to them.To begin with, using Jamboard, we
noted ideas and principles that we believed to be useful. You can see the result here. Once
all the ideas were noted, as a group we removed objects that were similar or not important
from the group's perspective.

We each worked on some of the objects and generated CRC cards (seen here). These
demonstrated which objects need to interact with each other and the connections between
the objects. As a result, it is easier to generate initial UML diagrams with the following CRC
diagrams. The RDD process was incredibly useful for the group as it allowed us to think
clearer about the intricacies of the project

From completing online research [1], there are various different UML diagrams we can
generate, all of them splitting into two categories, structural and behavioural. From there we
need to decide which diagrams will better display the overall idea of the program. The
diagrams we decided to create were Class diagrams as they provide an overview of the
structure of the code and the specific classes we will need in our code. For the behavioural
diagrams, we decided that we should complete two types of diagrams since games are user
experience based and therefore we should look at the detail of how the game is going to
behave.

Initially, the Class diagram was designed like this (found under first draft). It was clear early
on that all the stations had similar attributes but different actions, as a result we designed the
architecture such that there would be a stations class in which specific stations (cutting,
cooking, serving and so on) would inherit from. The difference from all the stations being the
action they complete. This description of the Class diagram represents the requirement
FR_FLIP_AND_CHOP. Further the requirement FR_TIMER has been demonstrated in this
diagram through the inclusion of the timer attribute in the GameState which records the time
elapsed playing the game. It is best to include this in the GameState since it controls when
the user decides to pause, start and end. Therefore it is easier to code to identify when the
timer needs to start and stop. Moreover, the requirement FR_GRAB_ITEMS is satisfied by
the inclusion of the Ingredient station where it allows the chef (aka the user) to pick up
ingredients for the recipe they are making.

Upon reflection we were missing a lot of information and the Class diagram needed more
detail thus resulting in this diagram (found under Second Draft section, titled “Piazza Panic
v2 — Class Diagram”). Here there are classes such as the customer that were missing from
the original. Also during the discussion of the generation of this diagram, we wanted to clear
some terminology up for consistency e.g. Chef instead of Cook, Chopping instead of Cutting
and so on. This is to ensure that there is no confusion later on in the project. The new
diagram satisfies the requirement UR_CUSTOMER and FR_SERVE_CUSTOMER by
including the customer class and the customerServed() method, along with the order

variable. This is a very important part of the project that was neglected in the original Class
diagram.

Additionally, FR_PLACE_ITEMS requirement is fulfilled by the addition of the counter
stations that will allow the user to place items on the top of the chef stack onto the counter.
This station was not included in the product brief however we felt that it was necessary to
include this into the project as it gives the user more freedom as they might want to cook the
second ingredient in the stack and cannot access it. The counter station mitigates this
problem.

Further to this, we include a bin station where the user can “bin” the top ingredient of the
chef's stack, this achieves the requirement FR_REMOVE_ITEMS. Again this station is not
mentioned in the product brief, but without the inclusion of this feature, the player might
accidentally pick up ingredients and then have nowhere to get rid of it.

Other diagrams were created on top of the class diagram to represent the behaviour of the
game and specifically how the user will interact with it. Thus, research was conducted into
displaying sequence and state diagrams correctly [2] [3]. This is an important part of the
design to demonstrate as there are several ways to implement a game, like will the chef be
controlled by the WASD method or will they be controlled using the arrows on the keyboard
or using the mouse and so on. Thus we need to clearly outline how the user interacts with
the software.

In figure 6 (also found here under overall diagram) it demonstrates an overview of the
system as a whole in a simplistic view. This view is important as it depicts the general use of
the system that the user will go through. However, it is vital to consider some specifics of the
system like how the chefs are controlled.

This is shown in the state diagram in figure 5 which demonstrates the user controlling a chef.
In our game, we decided that the user will use the mouse to select the chef that they would
like to control and then use the arrow keys on the keyboard to control the movement. This
simple state diagram demonstrates the FR_CHANGE_PLAYABLE_CHARACTER and
FR_MOVE_PLAYABLE_CHARACTER requirements.

Additionally, the state diagram in figure 7 illustrates the requirements FR_MUTE_SFX and
FR_GUIDE_USER, since it allows the user to move in between screens that allow the
performance of both requirements. This is quite a simplistic view of the system as it only
looks at the way that the user navigates the system and not how the user will interact with
the game contents, therefore an additional behavioural diagram needs to be generated.

Next we created a sequence diagram that shows how a user will make a burger and interact
with the stations and the different chefs. This is shown in here (the very last diagram). This
diagram is a step by step of how the user could make a burger in full, where the ingredients
include: cooked bun and cooked patty. It is important to note that this is only one way it could
be done, for example the user could cook the bun first, before cooking the patty. As a whole
the diagram represents FR_SERVE_CUSTOMER, UR_SERVE_FOOD and
UR_COOK_FOOD.

Generating this diagram, made the group realise that we have not accounted for combining
the ingredients together to create the final product. Thus we discussed including a recipe
station for that exact purpose, where the chef drops off the ingredient and then once all the
ingredients are present it will output a completed recipe. As a result of this the Class diagram
needed updating to include the missing station. This new version can be seen here under
Second Draft titled “Piazza Panic v2.1 — Class Diagram”.

The prior Class diagrams were interim designs and were never intended to be the official
diagrams, since they lack some detail and are not in the correct format. Therefore, research
[4] was conducted to ensure that the diagrams were technically correct. Furthermore, looking
more closely at the programming language and LibGDX we notice there were some things
we were missing from the originals that allow for collisions and the movement of the chefs.
Thus more Class diagrams were created, these are figure 1, figure 2, figure 3 and figure 4.
They can als be found here under the heading Final Draft.

There is one class diagram that solely represents the structure of the classes, missing the
details of the methods and variables that we need. This diagram is in figure 1. The reason
that we included this diagram is to show how each part of the code interacts with each other,
showing any inheritance and dependencies. However we would need smaller in depth
architecture that looks at the methods.

Looking at the second iteration we decided that there were too many stations and that
violated the NFR_OPERATABILITY requirement and it needed to be simplified. As a result,
we decided that instead of the bin station, we would include the action to remove the top item
of the stack in the ingredient station. This meant that the FR_REMOVE_ITEMS remained
satisfied as well as not violating the NFR_OPERATABILITY requirement. Further to this we
discovered that the inclusion of the recipe station meant that there was no longer a need for a
counter station since finished items can be placed in the recipe station instead. This is shown

in_figure 3.

Additionally, when removing stations we had to update previous diagrams such as the
sequence diagram_here (the last diagram on the page). We also decided to lessen the steps
in order to make a burger to maintain NFR_OPERATABILITY. The new sequence diagram is
seen in figure 8, which still satisfies the requirements FR_SERVE_CUSTOMER,
UR_SERVE_FOOD and UR_COOK_FOOD.

When thinking about how the chef is going to complete an action (e.g. cooking, baking and
so on) we decided that when the chef collides with a station then a list of actions they can
complete will appear. This is demonstrated in figure 4, where the Station deals with the
ingredients and chef. There is one StationActionUl per Station which has the buttons and
progress. The StationUIController allows stations to find the corresponding StationActionUI.
This diagram fully represents the requirement FR_FLIP_AND_CHOP since it includes
exactly how that will be achieved in the code. Also it satisfies the requirement
FR_NOT_OVERCOOKING such that the progress does not result in any overcooking of
sorts.

Finally, in figure 2 it describes how the chef is going to interact with the game and therefore
the stations. This describes the requirement UR_CONTROL_CHEFS. This is because of the
inclusion of the chef manager which deals with when the user selects a different chef. This is
further represented by the state diagram in_figure 5.

During the coding it is important to ensure that every part of the architecture is carefully
included into the project and that no code clashes with each other. Therefore it is important
to start with a plan, where someone sets up the environment and then others can add on
their code when needed. This was demonstrated when AF committed the initial commit to
generate LibGDX game and then to follow up he created a scaffolding of the code, for all the
classes that we had in the Class diagram.

The next step is to add the constructors to the relevant classes. This was demonstrated by

the commit, made by MF. Parallel to that, the tilemap can be rendered that allows objects to
move around the map. From here, the functionality for each part can be coded
simultaneously, provided that no coding tasks clash with each other.

Phase 2:

Going into phase two, we aimed to implement the small features first, ones which would
only require minor changes to the architecture. For example, we implemented the burning
mechanic as described in FR_OVERCOOKING, by creating a new class BurningUl and
altering the already existing CookingStation class with a new value totalTimeToBurn and the
associated logic.

Another minor change we made was to correct the UR_CONTROL_CHEFS requirement,
which had changed from 2 to 3 when the requirements were updated early in the second
phase. This was simple to implement with some minor modifications to the ChefManager
class. Since the previous team's architecture accounted for the expansion of the game,
adding a third chef was as simple as adding the new texture into an array. This change
required little change to the architecture, it remains the same as was first illustrated in figure
5

A slightly larger, but still trivial change was to introduce the new recipes, as described in the
altered UR_COOK_FOOD and UR_SERVE_FOOD requirements. We created three new
classes, PizzaBase, Potato and Cheese which are needed to create the new recipes.
Creating the new recipes themselves was done using two new classes Pizza and
JacketPotato, which both extend the Recipe class implemented by the previous team. All
logic was therefore already in place, making this a quick and simple change. Again, this
required little change to the underlying architecture - only a few new simple classes - and as
such figure 3 remains largely unchanged. However, behaviour for these new recipes can be
seen in our newly created behavioural diagrams, figure 2.5 and figure 2.6

One of the first major new features we implemented was the addition of the money system,
visible with the LongBoiBank class you can see in our new diagrams. This fulfils the new
UR_CURRENCY requirement and corresponding functionality. The diagram figure 2.3
illustrates this new class. It is largely standalone.

The requirement FR_INVEST_EARNINGS was implemented by building upon the previous
team's architecture surrounding stations and the StationAction class, in conjunction with the
new currency feature we had added. At the beginning of the game, we altered some of the
stations to be unavailable, and created the new action Unlock, available when the user
walks up to the station. The StationAction class is abstract and very easy to use in order to
implement this feature. As discussed in more detail later, the cost to unlock stations is
varied by the selected difficulty, relating to UR_DIFFICULTY. Additionally, we made it so that
the 3rd chef must be unlocked, providing the user with another incentive to earn coins while
still fulfilling UR_CONTROL_CHEFS.

Given the high quality architecture of the original game, many new features could be added
by altering preexisting classes. For example, we were able to implement the new endless
mode feature, as per the requirement UR_MODES, by editing the UlOverlay.java file. All
relevant methods were edited to take into account the boolean value isEndless, which alters

aspects of game play. We edited the HomeScreen class in order to allow the user a choice
between endless (FR_ENDLESS_MODE) and scenario mode (FR_SCENARIO_MODE).

Similarly, we implemented the new difficulty modes in this way. We took the design decision
to implement a new feature outside of the brief called Reputation, which is similar to a score
system: serving customers increases reputation, and taking too long with their orders
causes reputation to go down. If it hits 0, the game is over in endless mode. Reputation and
other factors such as food prices and time to burn are affected when the difficulty level is
changed. Our changes across the entire codebase fulfil the UR_DIFFICULTY requirement.
The choice between difficulty levels is given to users within the difficultyOverlay, created in
the HomeScreen class which is instantiated when the game is first played.

To fulfil UR_SAVE_GAME, which is linked closely to FR_SAVE_GAME_STATE, we had to
significantly refactor the code. The brief states that the user shall be able to save “at any
point”, in the game and as such we had to introduce saving features for both scenario mode
(FR_SCENARIO_MODE) and the newly introduced endless mode (FR_ENDLESS MODE).
To implement saving, we first created a new class Save, which uses some JSON code in
order to save details of the game's current state to a text file. Now, a user is presented with
the opportunity to load or start a new game when they open the game. If the load option is
selected, then the previous game state is restored. If not, then the usual process occurs: the
user selects their mode and difficulty and a new instance of the game is created.

The final main feature of the game that we have added is power-ups. This fulfils the
requirement UR_POWERUPS. We implemented this feature by creating a new class
PowerupStation, which extends Station. One benefit of this is that it improves test coverage,
as we have already been able to test the underlying methods from the Station class, giving
us more confidence in the correctness of the PowerupStation. We decided that powerup
stations should dispense random power ups at a given interval, which varies by difficulty.
This interval fulfils FR_POWERUP_COOLDOWN. The powerup station creates a new
StationAction ,GET_POWERUP, which is used to give the user its benefit, this fulfils
FR_POWERUP_ACTIVATION. The requirement FR_POWERUP_ABILITIES states that
“The system shall provide 5 powerups with distinct abilities”. We have met this requirement
by implementing the 5 random power ups as: increasing the chef speed, reducing the time
to cook, increasing the time to burn, decreasing the time to chop, and earning a set number
of coins. The benefits gained from the first 4 power ups are all time limited, and the effect
wears off after a given interval, further meeting FR_POWERUP_COOLDOWN.

Additionally, we have made some other minor tweaks to the architecture over the course of
this phase of the assessment. However, they do not relate to any specific requirements and
are just “quality of life” improvements, usually only a line or two. We have also made some
edits to the code to refactor it to make it more suitable for testing. Relating to testing, one of
the largest changes you will notice is the addition of our “test” folder, where all of our unit
tests are located.

