
 4. Architecture
 Part a)

 Figure 1: An overview of the Classes involved in the system architecture

 Figure 2: A detailed look at the methods and attributes for GameScreen, Station,
 ChefManager, CustomerManager and Chef

 Figure 3: A detailed look at the methods and attributes for ChoppingStation, CookingStation,
 IngredientStation, RecipeStation, Recipe, Station and Ingredient.

 Figure 4: A detailed look at the methods and attributes for Station, GameScreen, UIOverlay,
 StationUIController, StationsActionUI and Timer

 Figure 5: A state diagram for controlling the chefs

 Figure 6: A state diagram for the overall control of the game

 Figure 7: A state diagram for navigating through the screens

 Figure 8: A sequence diagram showing the completed process for the user to create
 a burger

 Figure 9: The sequence diagram of using chefs and how they interact with the
 station collider

 The tools used to create the diagrams to represent the architecture was PlantUML. We used
 PlantUML for its easy to learn and understandable syntax. PlantUML has support for making
 a variety of diagrams such as UML, State and sequence diagrams. PlantUML was useful to
 produce these diagrams in different formats that are simple to understand like PNG and Pdf
 files. We used class diagrams as it is most suited to represent an object oriented
 programming language such as Java.

 Part b)
 Architecture is a vital part of designing any program, as it provides a structure of how to code
 is going to work. Initially, we used the Responsibility Driven Design (RDD) strategy to aid the
 team to generate the main classes/features/screens that we need to implement. We chose
 this over Domain-Driven Design since Java is our main programming language, and RDD is
 best used for object-oriented languages. It allowed us to look at the system as a whole and
 not get caught up in the specifics just yet.

 Before we get ahead of ourselves, it is important to ensure that we are considering the
 requirements of the project. Relating back to the requirements centres the group ensuring
 that we remain on task. As a result during the RDD process we ensured that the
 requirements were in front of us to refer back to them.To begin with, using Jamboard, we
 noted ideas and principles that we believed to be useful. You can see the result here . Once
 all the ideas were noted, as a group we removed objects that were similar or not important
 from the group's perspective.

 We each worked on some of the objects and generated CRC cards (seen here). These
 demonstrated which objects need to interact with each other and the connections between
 the objects. As a result, it is easier to generate initial UML diagrams with the following CRC
 diagrams. The RDD process was incredibly useful for the group as it allowed us to think
 clearer about the intricacies of the project

 From completing online research [1], there are various different UML diagrams we can
 generate, all of them splitting into two categories, structural and behavioural. From there we
 need to decide which diagrams will better display the overall idea of the program. The
 diagrams we decided to create were Class diagrams as they provide an overview of the
 structure of the code and the specific classes we will need in our code. For the behavioural
 diagrams, we decided that we should complete two types of diagrams since games are user
 experience based and therefore we should look at the detail of how the game is going to
 behave.

 Initially, the Class diagram was designed like this (found under first draft). It was clear early
 on that all the stations had similar attributes but different actions, as a result we designed the
 architecture such that there would be a stations class in which specific stations (cutting,
 cooking, serving and so on) would inherit from. The difference from all the stations being the
 action they complete. This description of the Class diagram represents the requirement
 FR_FLIP_AND_CHOP. Further the requirement FR_TIMER has been demonstrated in this
 diagram through the inclusion of the timer attribute in the GameState which records the time
 elapsed playing the game. It is best to include this in the GameState since it controls when
 the user decides to pause, start and end. Therefore it is easier to code to identify when the
 timer needs to start and stop. Moreover, the requirement FR_GRAB_ITEMS is satisfied by
 the inclusion of the Ingredient station where it allows the chef (aka the user) to pick up
 ingredients for the recipe they are making.

 Upon reflection we were missing a lot of information and the Class diagram needed more
 detail thus resulting in this diagram (found under Second Draft section, titled “Piazza Panic
 v2 – Class Diagram”). Here there are classes such as the customer that were missing from
 the original. Also during the discussion of the generation of this diagram, we wanted to clear
 some terminology up for consistency e.g. Chef instead of Cook, Chopping instead of Cutting
 and so on. This is to ensure that there is no confusion later on in the project. The new
 diagram satisfies the requirement UR_CUSTOMER and FR_SERVE_CUSTOMER by
 including the customer class and the customerServed() method, along with the order
 variable. This is a very important part of the project that was neglected in the original Class
 diagram.

https://eng1-32.github.io/jamboard.html
https://eng1-32.github.io/crcCards.html
https://eng1-32.github.io/classDiagrams.html
https://eng1-32.github.io/classDiagrams.html

 Additionally, FR_PLACE_ITEMS requirement is fulfilled by the addition of the counter
 stations that will allow the user to place items on the top of the chef stack onto the counter.
 This station was not included in the product brief however we felt that it was necessary to
 include this into the project as it gives the user more freedom as they might want to cook the
 second ingredient in the stack and cannot access it. The counter station mitigates this
 problem.

 Further to this, we include a bin station where the user can “bin” the top ingredient of the
 chef's stack, this achieves the requirement FR_REMOVE_ITEMS. Again this station is not
 mentioned in the product brief, but without the inclusion of this feature, the player might
 accidentally pick up ingredients and then have nowhere to get rid of it.

 Other diagrams were created on top of the class diagram to represent the behaviour of the
 game and specifically how the user will interact with it. Thus, research was conducted into
 displaying sequence and state diagrams correctly [2] [3]. This is an important part of the
 design to demonstrate as there are several ways to implement a game, like will the chef be
 controlled by the WASD method or will they be controlled using the arrows on the keyboard
 or using the mouse and so on. Thus we need to clearly outline how the user interacts with
 the software.

 In figure 6 (also found here under overall diagram) it demonstrates an overview of the
 system as a whole in a simplistic view. This view is important as it depicts the general use of
 the system that the user will go through. However, it is vital to consider some specifics of the
 system like how the chefs are controlled.

 This is shown in the state diagram in figure 5 which demonstrates the user controlling a chef.
 In our game, we decided that the user will use the mouse to select the chef that they would
 like to control and then use the arrow keys on the keyboard to control the movement. This
 simple state diagram demonstrates the FR_CHANGE_PLAYABLE_CHARACTER and
 FR_MOVE_PLAYABLE_CHARACTER requirements.

 Additionally, the state diagram in figure 7 illustrates the requirements FR_MUTE_SFX and
 FR_GUIDE_USER, since it allows the user to move in between screens that allow the
 performance of both requirements. This is quite a simplistic view of the system as it only
 looks at the way that the user navigates the system and not how the user will interact with
 the game contents, therefore an additional behavioural diagram needs to be generated.

 Next we created a sequence diagram that shows how a user will make a burger and interact
 with the stations and the different chefs. This is shown in here (the very last diagram). This
 diagram is a step by step of how the user could make a burger in full, where the ingredients
 include: cooked bun and cooked patty. It is important to note that this is only one way it could
 be done, for example the user could cook the bun first, before cooking the patty. As a whole
 the diagram represents FR_SERVE_CUSTOMER, UR_SERVE_FOOD and
 UR_COOK_FOOD.

 Generating this diagram, made the group realise that we have not accounted for combining
 the ingredients together to create the final product. Thus we discussed including a recipe
 station for that exact purpose, where the chef drops off the ingredient and then once all the
 ingredients are present it will output a completed recipe. As a result of this the Class diagram
 needed updating to include the missing station. This new version can be seen here under
 Second Draft titled “Piazza Panic v2.1 – Class Diagram”.

 The prior Class diagrams were interim designs and were never intended to be the official
 diagrams, since they lack some detail and are not in the correct format. Therefore, research
 [4] was conducted to ensure that the diagrams were technically correct. Furthermore, looking
 more closely at the programming language and LibGDX we notice there were some things

https://eng1-32.github.io/behaviouralDiagrams.html
https://eng1-32.github.io/behaviouralDiagrams.html
https://eng1-32.github.io/classDiagrams.html

 we were missing from the originals that allow for collisions and the movement of the chefs.
 Thus more Class diagrams were created, these are figure 1 , figure 2 , figure 3 and figure 4 .
 They can als be found here under the heading Final Draft.

 There is one class diagram that solely represents the structure of the classes, missing the
 details of the methods and variables that we need. This diagram is in figure 1 . The reason
 that we included this diagram is to show how each part of the code interacts with each other,
 showing any inheritance and dependencies. However we would need smaller in depth
 architecture that looks at the methods.

 Looking at the second iteration we decided that there were too many stations and that
 violated the NFR_OPERATABILITY requirement and it needed to be simplified. As a result,
 we decided that instead of the bin station, we would include the action to remove the top
 item of the stack in the ingredient station. This meant that the FR_REMOVE_ITEMS
 remained satisfied as well as not violating the NFR_OPERATABILITY requirement. Further
 to this we discovered that the inclusion of the recipe station meant that there was no longer a
 need for a counter station since finished items can be placed in the recipe station instead.
 This is shown in figure 3 .

 Additionally, when removing stations we had to update previous diagrams such as the
 sequence diagram here (the last diagram on the page). We also decided to lessen the steps
 in order to make a burger to maintain NFR_OPERATABILITY. The new sequence diagram is
 seen in figure 8 , which still satisfies the requirements FR_SERVE_CUSTOMER,
 UR_SERVE_FOOD and UR_COOK_FOOD.

 When thinking about how the chef is going to complete an action (e.g. cooking, baking and
 so on) we decided that when the chef collides with a station then a list of actions they can
 complete will appear. This is demonstrated in figure 4 , where the Station deals with the
 ingredients and chef. There is one StationActionUI per Station which has the buttons and
 progress. The StationUIController allows stations to find the corresponding StationActionUI.
 This diagram fully represents the requirement FR_FLIP_AND_CHOP since it includes
 exactly how that will be achieved in the code. Also it satisfies the requirement
 FR_NOT_OVERCOOKING such that the progress does not result in any overcooking of
 sorts.

 Finally, in figure 2 it describes how the chef is going to interact with the game and therefore
 the stations. This describes the requirement UR_CONTROL_CHEFS. This is because of the
 inclusion of the chef manager which deals with when the user selects a different chef. This is
 further represented by the state diagram in figure 5 .

 During the coding it is important to ensure that every part of the architecture is carefully
 included into the project and that no code clashes with each other. Therefore it is important
 to start with a plan, where someone sets up the environment and then others can add on
 their code when needed. This was demonstrated when AF committed the initial commit to
 generate LibGDX game and then to follow up he created a scaffolding of the code, for all the
 classes that we had in the Class diagram.

 The next step is to add the constructors to the relevant classes. This was demonstrated by
 the commit, made by MF. Parallel to that, the tilemap can be rendered that allows objects to
 move around the map. From here, the functionality for each part can be coded
 simultaneously, provided that no coding tasks clash with each other.

https://eng1-32.github.io/classDiagrams.html
https://eng1-32.github.io/behaviouralDiagrams.html

