
Architecture
3a
For the diagrammatic representations, we have used UML class diagrams to represent the
classes, a UML Sequence diagram to show how the user moves through the screens and
what information is passed between them. We have used PlantUML to create the Class
diagrams because it was more efficient to write the code to create them than to draw them
manually in some other application. We created interim versions of the class diagram to help
our understanding, you can see how the classes have evolved over the course of
development. The other diagrams were created using lucid charts as we have had previous
experience in using this tool, and it is quick to create simple diagrams.

Structural diagrams :





Initial diagrams:



3b
We began the design process for the project with an initial discussion of the informal
requirements we had laid out after our first meeting with the stakeholder, and how we could
apply them to an architecture that would be appropriate to implement. From this discussion,
we had a basic idea of how we would implement the game map, how information such as
the orders and items the chefs were holding would be displayed, and how interactions would
work. We chose to employ an Object Oriented approach to the architecture throughout the
software as it lends itself to modularity, which is key given the collaborative nature of the
project and means that it will be easier for other teams to understand and extend our code
later on. Our initial planning for classes involved physical pen and paper diagrams, such as
the CRC cards which are available to view on our website, which we later translated into
more detailed UML diagrams as seen in 4a. These CRC cards were useful in establishing
the classes on which the rest of the game would be built upon. They were quick to make and
easy for everyone to understand, even those who weren’t on the implementation team. After
this, we created initial classes such as Chef in order to get an understanding for how the IDE
and LibGDX framework worked. Our first prototype of the game was a simple kitchen in
which two instances of the Chef class could move. From this foundation, we were able to
create new classes and add new methods and attributes to the Chef class in order to
implement features. This is the principal advantage of OOP, in that it is easy to build from a
relatively simple foundation to the final version. This worked well with the Agile methodology
we adopted. Since we used object oriented programming, we have been able to create UML
diagrams showing the classes and their methods and attributes to better understand the
architecture.

We will now provide a systematic breakdown of the architecture of the code, and how it
relates to the requirements that have been set out in the Requirements deliverable.

User Requirement 1.1 concerns the movement and control of the chefs. The requirement
1.1.1 and 1.1.2, about interacting with the stations is handled on a case by case basis by the
respective station classes within the code. Requirement 1.1.3 (concerning the chef picking
up items) is implemented as an inventory system which is coded in the Chef class as a
method, with further implementation details in the Hud class, which handles other interface
related tasks and will be mentioned again in this document. Likewise, requirement 1.1.4,
concerning the interaction between a station and the items the chef using it is carrying is
also implemented in the Chef and appropriate station class, ChoppingArea for example. The
requirement 1.1.5 describes the movement of the chef. Movement of the chef is
implemented within the PlayScreen class, which continually takes inputs and adjusts the x
and y coordinate attributes of the appropriate instance of the Chef class accordingly.
User requirement 1.2 describes the behaviour of the customers and defines the rules for
how they should order items in the game. We have implemented the customers - thus
fulfilling requirement 1.2.1 - in the class Customer, which interacts with the PlayScreen class
in order to display their sprites. Code regarding the behaviour of the customer, such as when
it appears and randomly selecting their order - is implemented within the Customer class
itself. Customer inherits from the class NPC, which we created in order to define the sprite.
User requirement 1.3 details the pantry, which is implemented like all other stations as
another class called Pantry, with its behaviour (requirements 1.3.1 and 1.3.2) and rules for
collision implemented within it. All stations inherit from the InteractiveTileObject class.



User requirement 1.4 and its subclasses concern another station: The cutting station. This is
implemented as a class ChoppingArea. The fixed amount of time described in 1.4.1 is
implemented within the Dish class, which specifies the time for individual ingredients on a
per recipe basis.
1.5 is similar in which it details the frying station for grilling burgers. It is implemented as a
class BurgerFryer. Again, 1.5.1 - the fixed amount of time - is implemented as a variable in
Dish. Validation specified in 1.5.4 and 1.5.5 is provided in the code for the BurgerFryer class.
Again, similarly, requirement 1.6 describes the toasting station, which is implemented as the
BunBox class which extends InteractiveTileObject. Implementation again is the same,
extending InteractiveTileObject, with the time in 1.6.1 implemented in Dish and the logic for
validation in BunBox itself.
Finally in this vein, there is a station for assembling ingredients into dishes, implemented
with the class AssemblyStation. This satisfies requirement 1.7 and its sub requirements
concerning its behaviour. Again, this class inherits from the InteractiveTileObject class. As
mentioned in 1.7.3, this station's behaviour should be implemented as a stack, which you
can see.
User requirement 1.8 moves on from the stations and begins to describe the behaviour of
the recipes which the customers will order. Each recipe is implemented as an instance of the
Dish class, which has variables for defining the name, ingredients and time it will take to
make the recipe. It does this using elements of JSON.
The requirement 1.9 concerns the ending screen, which is implemented as another class
EndScreen. The sub-requirement 1.9.1 states that the timer must end and its result be
displayed. This timer is implemented within the Hud class, and its value is passed from this
class to EndScreen to be output, satisfying 1.9.2. Finally, the two buttons described in 1.9.3,
exit and restart, are implemented as instances of the Button class.
The final user requirement 1.10 describes the homepage that is displayed when the game
begins. This was implemented as a class MainMenu. As per the requirements 1.10.1 and
1.10.2, it contains 2 buttons to begin the game and exit, which are implemented as instances
of the Button class.

System requirement 2.1 describes in more detail the movement and behaviour of the chef
sprites. 2.1.1 considers the hit collection, which we implemented using the LibGDX
contactlistener. It checks for contact between fixtures of the chef sprite and the counters and
stations. As previously mentioned, the WASD movement (2.1.3) was implemented within the
class PlayScreen (of which the game itself is an instance of). 2.1.2 has been handled
naturally from the construction of the code - invalid inputs are ignored.
2.2 and its sub requirements detail the random nature of the customers orders. We
implemented counters which are described in 2.2.1, and their behaviour described in 2.2.1.1
and 2.2.1.2, as labels within the Hud class - an overlay that is displayed over the game
screen. The logic for the order generation is split between the Customer class and the
PlayScreen class. The random element of the orders, detailed in 2.2.2 and 2.2.3, was
provided through the addOrder() method in the Hud class, which randomly increments the
burger or salad counter when an instance of Customer calls this method (when they arrive).
2.3, again this system requirement, like its user counterpart, concerns the handling of items
that the chef is holding. This requirement specifies that it should be implemented as a stack
(2.3.1). This stack is implemented within the Chef class, and communicates with other
classes when the chef interacts with stations, which mirrors changes within the Hud class as



specified in 2.3.2 and 2.3.3. Like WASD movement, the keyboard controls to display the
inventory have been coded in PlayScreen.
System requirement 2.4 goes into more detail on the hit detection, which as previously
mentioned, was implemented using the predefined contactlistener feature of LibGDX. The
basic logic of collision (2.4.1 and 2.4.2) were defined in the PlayScreen class. The “fixtures”
that make up the chefs were defined within the Chef class and mean that hit detection is
handled neatly and simply, with the slight overlap with counters as detailed in 2.4.1.1
2.5 concerns the use of items in preparing recipes. This is the core mechanic of the game
and as such the underlying architecture is perhaps the most complex. All stations which
inherit the InteractiveTileObject class play some role in preparing the ingredients for use in
dishes, which are finally assembled at the assembly station, implemented as the
AssemblyStation class. This checks that all necessary items are present in the users
inventory and produces the correct instance of the Dish class.
System Requirement 2.6 talks again about the implementation details of the main menu as
previously mentioned in this document when we talked about user requirement 1.10. It also
notes the non functional requirement 2.6.1 which specifies that the layout should be as
simple as possible, which we tried to keep in mind when designing the interface for
MainMenu.
2.7 is a more general requirement concerning the performance of the game, which we tried
to heed by ensuring logic was as simple as possible, minimising the amount of loops or
processing heavy tasks in code. This was of particular importance in coding the behaviour
for the Chef class and the classes for stations, and the interactions between them.
Similarly, the system requirement 2.8 and its sub requirements also focuses on the
performance and scalability of the program, which we tried to account for in a similar way,
also paying extra attention to the UI again, as mentioned in 2.8.3.
Focusing more on the UI, 2.9 gives more detail on how we should improve the UI, given the
context of where the game will be played, and also considering those users with visual
impairments. You can best see this in the MainMenu class and its interface - we used simple
colours and high contrast, which links to the requirements 2.9.1.1 and 2.9.1.2. Additionally,
you can see in PlayScreen how we have tried to display information graphically (2.9.2)
2.10 concerns the end screen, again implemented as a class EndScreen, with the two
buttons (2.10.2 and 2.10.3) implemented as instances of the Button class. The output of the
timer value is handled by logic within PlayScreen.
Finally, the system requirements 2.11 and 2.12 focus on the code itself - the quality of it and
the style that it is written. Hopefully you can see throughout our code that we have paid
attention to ensuring that it is clear and maintainable (2.11.2) and has comments throughout
as described in 2.11.1. We also laid out in requirement 2.12 the details of OOP that we
wished to employ. It is clear that we have made frequent use of classes, such as Chef where
each individual chef is an instance of this, which fulfils requirement 2.12.1. We also used
encapsulation throughout the code (2.12.2), wherever you see a private attribute, this is
where we have used encapsulation for robustness. Finally, requirement 2.12.3 has been
met, wherever the “extends” keyword is used within the code, showing a subclass inheriting
from its parent class, such as BurgerFryer inheriting from InteractiveTileObject.


