
 4. Method selection and planning
 Part a)
 Within our team we discussed the tools that we thought were the best fit to optimise the
 collaborative work. We decided that Github, intellij, discord and google drive would be the
 best tools to aid our game development. For the following reasons:

 GitHub is the platform we chose because it provides a convenient way for developers to host
 and share our code, track changes, and collaborate with each other on our project. It also
 offers a variety of tools for managing and reviewing code, such as pull requests and issue
 tracking. Additionally, GitHub is widely used in the industry, making it a popular choice for
 developers to share and discover open-source projects.

 IntelliJ is the IDE that we chose as it provides advanced debugging features, such as the
 ability to set breakpoints, step through code, and inspect specific variables. This makes it
 easier to fix bugs in code. IntelliJ also provides intelligent code assistance, including code
 completion, error highlighting, and refactoring. This helped write code more efficiently and
 with fewer errors.

 Another reason why we chose IntelliJ is that it is available for Windows, Mac, and Linux,
 making it accessible for the whole team to collaborate on the different operating systems.
 IntelliJ IDEA has a large and active community of users and developers, which means
 support is readily available when a problem arises.

 We chose IntelliJ over VS Code as it is a more powerful and feature-rich IDE that is best
 suited for larger scale Java projects, while VS Code is a lightweight IDE and is more suited
 to other projects.

 Discord was our method of communication outside of group meetings. Discord servers are
 divided into channels that are organised by topic or purpose which makes it easier to find
 information. Whereas our team did not select Slack as Slack channels are organised by
 team or project. This would have not been utilised as we did not have multiple projects but
 we had multiple topics ongoing. Also Discord has better calling facilities compared to Slack.

 Discord is designed to help teams collaborate and stay organised by allowing us to create
 channels for specific projects or topics. For example, we created a channel about the
 implementation. Team members can also send direct messages to one another and make
 calls or start video chats. A useful feature was screen sharing as this allowed us to easily
 work on code and mention specific parts of the project without confusion. Discord also allows
 users to receive notifications for specific channels or mentions, which means that team
 members will be alerted when there is new activity or important information that they need to
 know. Discord allows integration with third-party tools such as GitHub, which can be useful
 for version control.

 Google Drive is a useful tool for a Java coding project as it allows for cloud-based file
 storage, real-time collaboration, version history, access control, and integration with other
 tools. It is also a good complement to other tools like GitHub to improve the collaboration of
 our Java game.

 Google Drive provides multiple users to edit and collaborate on a document in real-time. This
 makes it easy for all team members to work together on our game, even when we were not
 in the same physical location.

 We used Google Drive over DropBox as Google Drive can be integrated with a variety of
 third-party tools and apps, such as Google Docs, Sheets, and Slides, which can be useful for
 project management, documentation, and collaboration. Dropbox also offers integration with
 third-party apps, but the list of apps is more limited than Google Drive. Also every member
 within the team has a Drive set up that was readily available to use due to our York university
 accounts.

 All of the tools above aided our collaboration on our game development as we looked for the
 following attributes within these tools:

 1) Version control: Using a version control system like Git allows team members to
 collaborate on code and track changes, with the ability to revert to previous versions
 if needed.

 2) Communication: A real-time communication platform like Discord can be used for
 team members to discuss and collaborate on code, as well as share files and
 screenshots.

 3) Cloud-based file storage: A cloud-based file storage platform like Google Drive or
 Dropbox allows team members to access project-related files and documents from
 anywhere with an internet connection.

 4) Project management: Can help keep track of tasks, deadlines, and progress, and
 keep team members informed of the overall project status.

 5) Code review: Establishing a code review process allows team members to review
 and provide feedback on each other's code, which can help improve the overall
 quality of the codebase.

 6) Access control: Control of access levels for different team members, allowing for
 managing who can view, edit, or share files and documents.

 7) Security: Ensuring that all tools used are secure and that sensitive data is protected
 by encryption, two-factor authentication, and other security measures.

 Part b)

 To effectively work as a team, it is important that we play to the individual strengths of each
 team member. Such that everyone feels comfortable in the role that they have been
 assigned to, thus performing to the best of their abilities. We held a group discussion about
 prior software experience and group experience to determine where each member would fall
 in which role. Furthermore, we had to have a discussion about the roles we would need in
 the lifecycle of the project. This session was called "Forming".

 During the discussion, the notable roles for members to play were: Meeting Chair, Secretary
 Librarian, and Report Editor. The purpose of the Meeting Chair is to ensure that the group
 remains on task during our meetings and to assign tasks at the end of the meetings. The
 purpose of the secretary is to record decisions made in meetings for future use through
 meeting minutes. The librarian's role is to keep documents and other resources and to
 oversee version control. The purpose of the report editor is to oversee and organise the
 production of reports. Some roles were divided between two teammates.

 These roles were divided up to the team based on individuals strengths. To identify their
 strengths, each team member wrote down three of their strengths and then as a group we
 decided who would fit which role. Ensuring that we consider each of the team members
 preferences. For example, both Isselmou and Alistair were fit for the role of Meeting Chair,
 but Isselmou verbally stressed that they were uncomfortable with that role. As a conclusion,
 Alistair volunteered for the role.

 Megan Organisation, Planning, Communication Secretary

 Kajol Problem solving, Motivated, Organised Librarian

 Isselmou Problem solving, Flexibility, Report Secretary

 Matt Communication, Intuition, Decisiveness Secretary

 James Problem solving, Listening, Adaptability Report Editor

 Alistair Problem solving, Communication, Dedication Meeting Chair

 Commencing the project, it was decided that all members would contribute to the code.
 However, in practice, we soon realised that it would benefit the team for only a few select
 members to work on the code, while the rest dedicated their time to the deliverables. This
 was because, in order for all the members to be involved in the coding, tasks were split up
 incredibly small, which resulted in some tasks relying on the completion of tasks by other
 team members. This violated one of the risks in the risk register, R_PROJECT_06.
 Therefore, the owner, James Wild, decided it would be best to only allow three members of
 the team to code. The split was decided by preference and experience. At this point, Matt
 Fitzpatrick, Alistair Foggin, and James Wild continued with the code, and Kajol Dodia,
 Megan Miles, and Isselmou Boye continued with the deliverables.

 Part c)

 Beginning the project, we looked at the key tasks for each deliverable that needs to be
 completed. This is demonstrated in the table below:

 Start Date End Date

 Requirements ● Conduct interviews
 ● Research for requirements
 ● Write up requirements

 21/11/2022
 24/11/2022
 26/11/2022

 21/11/2022
 26/11/2022
 27/11/2022

 Architecture ● Research into architectural designs
 ● Responsibility Driven Design
 ● Structural Diagrams and Behavioural

 Diagrams
 ● Justification of architecture

 28/11/2022
 28/11/2022
 29/11/2022

 28/11/2022

 16/01/2023
 28/11/2022
 22/01/2023

 26/01/2023

 Risk
 Assessment

 ● Research into appropriate ways to
 demonstrate a risk register

 ● Create risk register

 24/11/2022

 25/11/2022

 25/11/2022

 01/12/2022

 Implementation ● Code
 ● List of 3rd party libraries and assets

 05/12/2022
 23/01/2023

 31/01/2023
 30/01/2023

 Method and
 Planning

 ● Software engineering methods
 ● Team organisation
 ● Systematic plan for the project

 23/01/2022
 23/01/2022
 23/01/2022

 29/01/2023
 29/01/2023
 29/02/2023

 Testing ● Against the requirements 20/01/2023 29/01/2023

 Website ● Create website
 ● Add the necessary details for the

 website

 27/11/2022
 27/11/2022

 27/11/2022
 31/01/2023

 As part of our team-forming session, we created a plan for when each part of the project
 would need to be completed. The first thing on the agenda was to identify whether we would
 need to work over the autumn term break. The group decided that it would benefit the project
 if we continued to work during the break, however, allowing a short period of recession over
 Christmas and New Year’s. Considering these aspects, we can develop an initial plan. Seen
 here under the heading first iteration.

 The initial plan worked as follows: complete a draft of the requirements and risk
 management simultaneously by splitting up tasks amongst the group, then move on to the
 Architecture of the software and complete a draft before starting to code. During the period
 of 05/12/2022 to 06/01/2023 we would complete the development of the code in its entirety,
 as well as write a first draft of the Method and Planning as much as we could at that point in
 time. In the New Year, test and ensure that each of the requirements has been met. Finalise
 copies of the deliverables so that they are ready to be submitted. This plan can be seen
 here.

 It detailed that we would first complete our client meeting as a team. From there, we can
 develop the requirements using the notes from the client meeting and the product brief. With
 a better understanding of how the life-cycle of the project is going to look, we can formulate
 a number of risks that could impact the development of the project while simultaneously
 completing the requirements. This is because requirements and risk register do not depend

https://eng1-32.github.io/ganttChart.html

 on each other and can be completed independently. This part of the project met the group's
 expectations and was completed on schedule. Therefore, there is not much differentiation
 between the first iteration and the second iteration of the weekly plans in terms of timings.
 However, we felt it necessary to add extra detail to the chart. Such as specific tasks that
 were completed that week with the initials of the team members who were completing them.

 As a result of completing prior work, we have a clear understanding of the project as a whole
 and can now continue onto more technical aspects of the system.This is when we start
 considering the software architecture and delve deeper into the classes needed for the
 system. During this part of the project, we prioritised generating the Sequence and
 Behavioural diagrams, thus ensuring that there is a detailed description of the project that
 the group can follow. This is because the implementation of the project was dependent on
 the completion of the UML diagrams. Of course, the justification of the architecture could not
 be completed until the architecture was developed. As a result, writing the report was not a
 top priority. Thus, the Architecture report was neglected until the previous work was fully
 completed.

 This was not in our initial plan; this is because the generation of the diagrams took longer
 than we expected. There were a lot of aspects of how the code would work that needed to
 be discussed, changed and constantly updated, such as how the chef will be controlled,
 where the verification of the correct recipe will take place in the code (with the cook or
 service station), and so on. As a result, the Architecture part of the initial plan overran, and
 therefore the report aspect was neglected to ensure that we did not fall further behind on the
 project. This is not reflected in the Gantt Charts (third iteration) however since the
 architecture and UML diagrams were technically complete and team member Megan Miles
 had written about the Responsibility Driven Design process during this time, which is
 reflected in the chart.

 Next to be completed is the actual coding and development of the Piazza Picnic. Originally,
 we devised the plan such that each member of the team would contribute to the code.
 However, very early on, we realised that this was not feasible, and we would have to split the
 team into two parts: one part completing the code and the other part continuing with the
 deliverables. Therefore, more work can be done simultaneously. This correction was added
 to the Gnatt chart here where the fourth iteration displays every member contributing to the
 code and then the fifth iteration shows that only half of the team are continuing with the
 code.

 Unfortunately, in this rendition of the plan (fifth iteration), we concluded that we would like the
 prototype to be completed by 15/01/2022 which did not come true. Due to other
 commitments (other modules and exams), there was a stagnation in the development of the
 code and the deliverables. As a result, the plan needed further editing. These can be seen
 here. The difference is that we had less time to ensure that the report flowed properly and
 that the code was well documented. However, the time added at the end was there in the
 event that we fell behind and needed extra time to complete certain tasks.

 According to the project's final plan (sixth iteration), all ongoing tasks (whether coding or
 report writing) must be completed by January 23 before our meeting. During this meeting,
 we would tidy up the website, adding all the necessary information and ensuring that it was
 readable. At the end of the meeting, we would assign each person a deliverable that they
 had no involvement in writing. Then over the weekend, each person would read over the
 deliverable to ensure that it met the needs of the project. Thus, in the succeeding meeting on
 30/02/23 we can then discuss any necessary additions or edits.

https://eng1-32.github.io/ganttChart.html
https://eng1-32.github.io/ganttChart.html
https://eng1-32.github.io/ganttChart.html
https://eng1-32.github.io/ganttChart.html

